Eigenvalue asymptotics for the one-particle kinetic energy density operator

نویسندگان

چکیده

The kinetic energy of a multi-particle system is described by the one-particle density matrix τ(x,y). Alongside γ(x,y) it one key objects in quantum-mechanical approximation schemes. We prove asymptotic formula λk∼(Bk)−2, B⩾0, as k→∞, for eigenvalues λk self-adjoint operator T⩾0 with kernel

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace formulae and high energy asymptotics for Stark operator

In L(R), we consider the unperturbed Stark operator H0 (i.e., the Schrödinger operator with a linear potential) and its perturbation H = H0 + V by an infinitely smooth compactly supported potential V . The large energy asymptotic expansion for the modified perturbation determinant for the pair (H0, H) is obtained and explicit formulae for the coefficients in this expansion are given. By a stand...

متن کامل

Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface

Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...

متن کامل

Testing the kinetic energy functional : Kinetic energy density as a density functional

A new method for defining an energy density for the noninteracting kinetic energy of density functional theory is given. The resulting energy density is a density functional determined completely by the kinetic energy functional itself. Although this method is not constructive, it allows for a direct comparison between exact and approximate functionals pointwise in space. For simple systems, th...

متن کامل

Nonclassical Eigenvalue Asymptotics *

1 he leading asymptotics for the growth of the number of eigenvalues of the two-dimensional Dirichlet Laplacian in the regions {(x, y)l 1x1 " / yl < 11 and for 4 + lxlD I yj4 all of which are non-Weyl because of infinite phase space volumes are computed. Along the way, a general inequality on quantum partition functions coriputed in a kind of Born-Oppenheimer approximation is proved.

متن کامل

Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger

which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2022

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109604